Wiring American Flyer Sectional Track

Norbert Doerry

Version 1.0 of April 2020

doerryn@yahoo.com

http://doerry.org/norbert/train/AFtrain.htm

Copyright (C) 2020 Norbert H. Doerry
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled "GNU Free Documentation License".

1. Introduction

There are many options for routing wire between a transformer and American Flyer sectional track. This document evaluates the impact of wire gauge (AWG) number of connections, and routing of wires to a notional loop consisting of 40 sections of American Flyer sectional track: 12 curve and 28 straight. Seven different cases are examined for six different gauges of wire and 3 different values of track resistance.

In comparing the options, the following metrics were considered:

- 1. The difference between the highest and lowest resistance of points on the track as measured from the transformer terminal. This difference reflects the variability in speed the engine will experience as it completes a revolution of the track. Experiments conducted on my layout (using a 12B transformer) indicate a difference of 0.5 ohms is barely noticeable at low speeds, but not at high speeds. Allocating half of this resistance difference to each of the two conductors / rails, desirable performance is for each conductor / rail to have a resistance difference of no more than 0.25 ohms. Marginal performance is attributed to a resistance difference greater than 0.5 ohms. Undesirable performance is attributed to a resistance difference greater than 0.5 ohms.
- 2. The average resistance from the sample points to the transformer terminal is not an issue unless it becomes so large that the train engine cannot achieve a reasonable speed when the transformer is at its maximum setting. Subjectively, I determined that the average resistance for each conductor / rail would have to exceed about 0.75 ohms with my 12B transformer before becoming excessive. This only occurs for Case 1, hence average resistance was not used as a discriminator.
- 3. While cost is always of concern, none of the cases used more than 100 ft, and the cost difference between 100 feet of the smallest (22 AWG) and largest (12 AWG) wire is only on the order of \$8 if speaker wire is used. See Table 1 for details.

AWG	length	single conductor stranded	Source	Speaker Wire	Source	ROMEX house wiring	Source
22 AWG	100 ft	\$9.95	Jameco	\$10.95	Audiopipe - Amazon		
20 AWG	100 ft	\$12.95	Jameco	\$11.95	Audiopipe - Amazon		
18 AWG	100 ft	\$18.95	Jameco	\$12.95	Audiopipe - Amazon		
16AWG	100 ft	\$20.95	Jameco	\$14.95	Audiopipe - Amazon		
14AWG	100 ft			\$16.89	Audiopipe - Amazon	\$31.57	Home Depot
12AWG	100 ft			\$18.95	Audiopipe - Amazon	\$48.57	Home Depot

Table 1: Cost of Cable (as of March 29, 2020)

Three different values of track resistance are used because one of the critical factors for track resistance is the degree that the track connectors make good electrical contact. I connected together ten pieces of American Flyer section track without making any special effort to establish a good electrical connection. The resistance of one rail was 0.75 ohms while the other was 1.61 ohms. Based on these measurements, I selected three values of track resistance per section to use in this analysis: 0.025 ohms, 0.075 ohms, and 0.15 ohms. The lower value (0.025 ohms) reflects a value that should be attainable with careful attention to establishing a good electrical connection. The middle value (0.075 ohms) reflects a value attainable with a reasonable effort to establish a good electrical connection, or that value that may happen as the electrical conductivity degrades over time. The higher value (0.15 ohms) reflects a value where little attention has been paid to establishing good electrical conductivity, or where the electrical conductivity has degraded over time.

A desirable configuration achieves the desirable resistance difference for the middle value of track resistance. A highly desirable configuration achieves the desirable resistance difference for the higher value of track resistance.

The resistance per foot of copper wire is listed in Table 2. The source for this data is ASTM B8 and is applicable for 20° C (68° F) which is a reasonable room temperature for a train layout.

Table 2: Resistance (ohms) per foot of stranded copper wire

12 AWG	14 AWG	16AWG	18AWG	20AWG	22AWG
0.00163	0.00258	0.0041	0.00654	0.0103	0.0164

The voltage drop experienced by an engine will be equal to its current draw (amps) multiplied by twice the resistance of a single rail / wire from the point on the track back to the transformer. The American Flyer Service Manual indicates for steam engines, the maximum current draw at 12 volts a.c. can range from 1.75 to 2.3 amps when pulling 4 box cars. For diesels, the maximum current draw can range from 1.8 to 3.25 amps. For post war American Flyer steam engines, the maximum currents I measured on my collection of engines are between 1.6 and 2.5 amps when pulling 8 freight cars (6 gondolas, 1 box car, 1 TOFC). For a dual motor ALCO, I measured a maximum of 2.5 amps. An American Models Baldwin diesel with a can motor had a maximum current draw of 0.6 amps.

Based on the above, one can probably plan on a maximum current of about 2.5 amps. With a maximum track resistance difference of 0.25 ohms for desirable operation, this translates into a maximum voltage variation of $2 \times 0.25 \times 2.5 = 1.25$ volts.

2. Cases

Figures 1 through 7 depict the seven cases and the resistances for three wire gauges and the three track resistances as calculated at points that are near the local maximum and minimum resistance values. The "Delta R" table provides the differences between the maximum and minimum resistances. Combinations of wire gauge and track resistance that resulted in a desirable "Delta R" of 0.25 ohms or less are highlighted in green. Marginal performance is highlighted in yellow, and Undesirable performance is highlighted in orange.

The data for all six wire gauges are presented in Appendix A.

For cases 1 through 6, the track oval was broken into 8 groups of 5 sections of track. The boundaries between groups are nodes labeled: 10, 12, 20, 23, 30, 34, 40, and 41. The transformer terminal is assigned node 0. Each group of tracks was modeled as a resistor with a label beginning with "RT_" and ending with the labels of the two nodes at its end. In case 7, two of the groups are broken into two subgroups with node 60 midway between nodes 10 and 12, and node 61 midway between nodes 12 and 23. In this case, RT_1060 and RT_6012 replace RT_1012, while RT_1261 and RT_6120 replace RT_1220. The resistances of each track group (including low, medium, and high values) are presented in Table 3.

sections Resistance (ohms) M Н RT 1012 0.75 0.125 0.375 5 RT_1220 5 0.125 0.375 0.75 RT 2023 5 0.125 0.375 0.75 RT_2330 5 0.125 0.375 0.75 RT_3034 5 0.375 0.125 0.75 RT_3440 5 0.125 0.375 0.75 RT_4041 5 0.125 0.375 0.75 RT_4110 5 0.125 0.375 0.75 RT_1060 2.5 0.0625 0.1875 0.375 RT 6012 2.5 0.0625 0.1875 0.375 RT 1261 0.0625 0.1875 2.5 0.375 RT 6120 0.0625 0.1875 0.375

Table 3: Track group resistance

Copper wires are labeled with "RC_" followed by the labels of the nodes they connect. Cases 6 and 7 have an additional node 50 used to connect wires together, but not associated with a track group. Details on all of the wires defined in all seven cases are provided in Table 4. All the wires are not used in any one case. Table 5 indicates which wires (cables) are used in each case and the total length of cable required.

Table 4: Resistance of copper wires (ohms)

Wire	length (in)	12 AWG	14 AWG	16AWG	18AWG	20AWG	22AWG
RC_0010	32	0.0043	0.0069	0.0109	0.0174	0.0275	0.0437
RC_1030	154	0.0209	0.0331	0.0526	0.0839	0.1322	0.2105
RC_1020	110	0.0149	0.0237	0.0376	0.0600	0.0944	0.1503
RC_2030	110	0.0149	0.0237	0.0376	0.0600	0.0944	0.1503
RC_3040	110	0.0149	0.0237	0.0376	0.0600	0.0944	0.1503
RC_4010	110	0.0149	0.0237	0.0376	0.0600	0.0944	0.1503
RC_0020	134	0.0182	0.0288	0.0458	0.0730	0.1150	0.1831
RC_0030	180	0.0245	0.0387	0.0615	0.0981	0.1545	0.2460
RC_0040	110	0.0149	0.0237	0.0376	0.0600	0.0944	0.1503
RC_0050	110	0.0149	0.0237	0.0376	0.0600	0.0944	0.1503
RC_1050	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093
RC_2050	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093
RC_3050	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093
RC_4050	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093
RC_1250	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093
RC_2350	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093
RC_3450	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093
RC_4150	80	0.0109	0.0172	0.0273	0.0436	0.0687	0.1093

Table 5: Cable lengths and association with cases

			Ca	ble (inche	s)		
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
RC_0010	32	32	32	32	32		
RC_1030		154					
RC_1020			110	110			
RC_2030			110	110			
RC_3040			110	110			
RC_4010				110			
RC_0020					134		
RC_0030					180		
RC_0040					110		
RC_0050						110	110
RC_1050						80	80
RC_2050						80	80
RC_3050						80	80
RC_4050						80	80
RC_1250							80
RC_2350							80
RC_3450							80
RC_4150							80
			Total	Cable (inc	hes)		
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7
	32	186	362	472	456	430	750

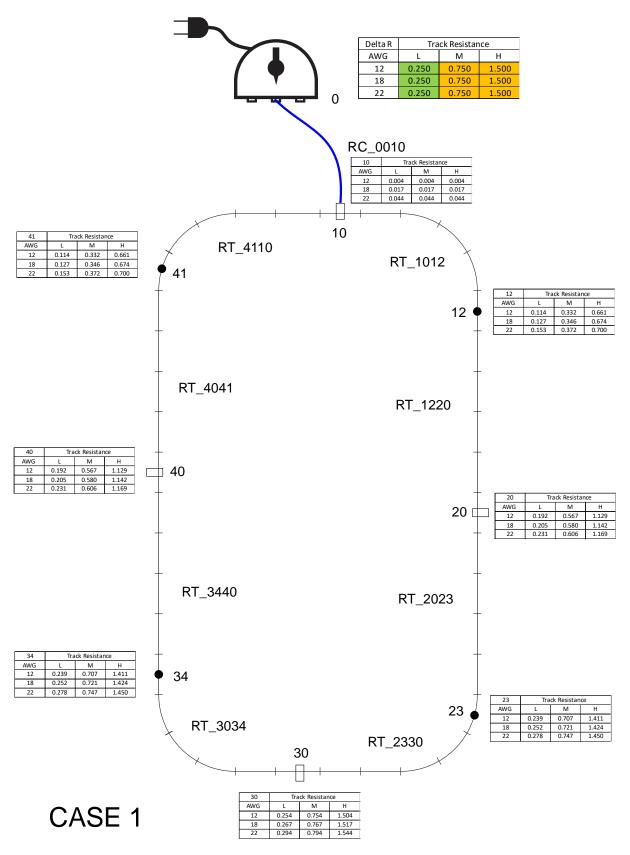


Figure 1: Case 1

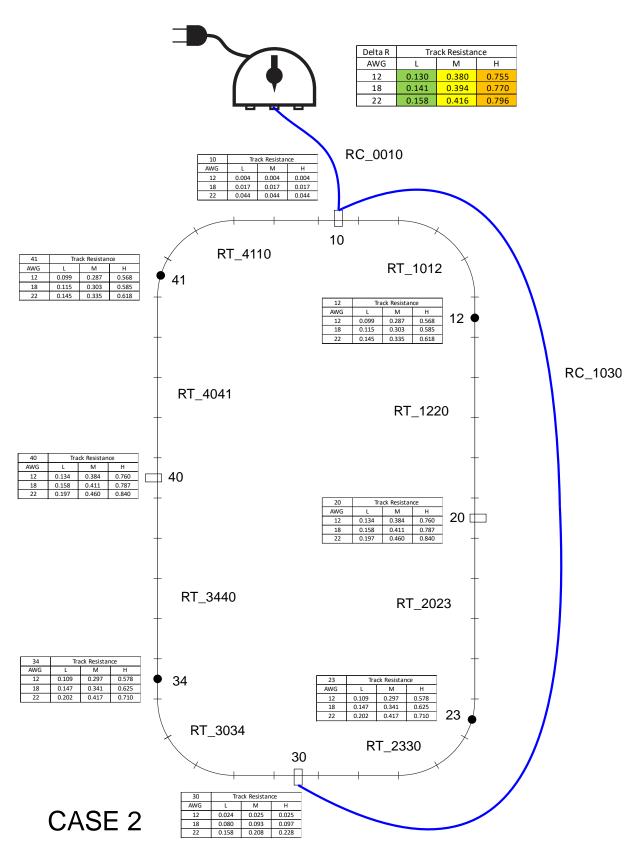


Figure 2: Case 2

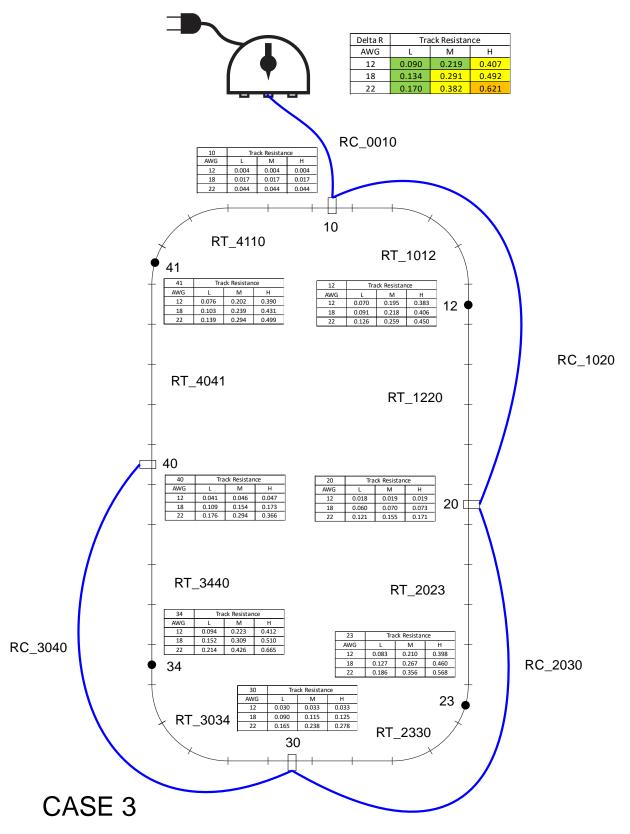


Figure 3: Case 3

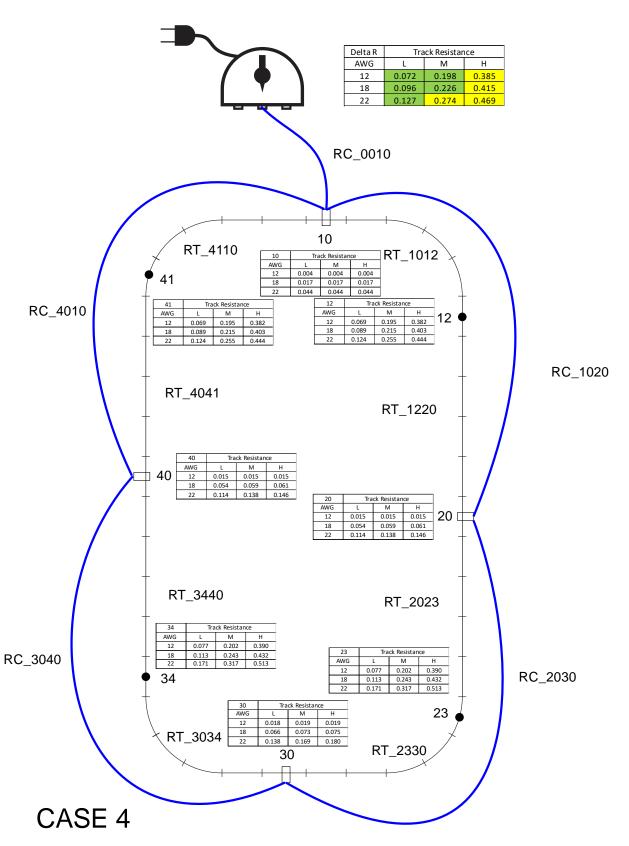
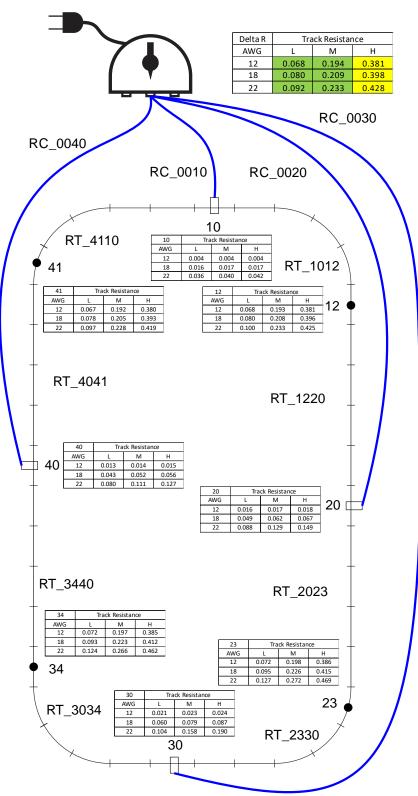



Figure 4: Case 4

CASE 5

Figure 5: Case 5

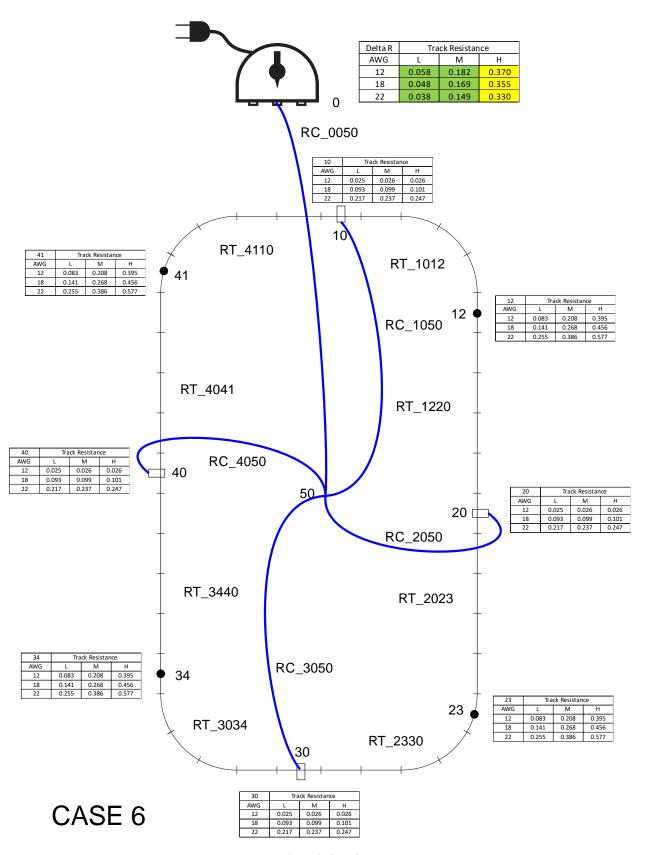
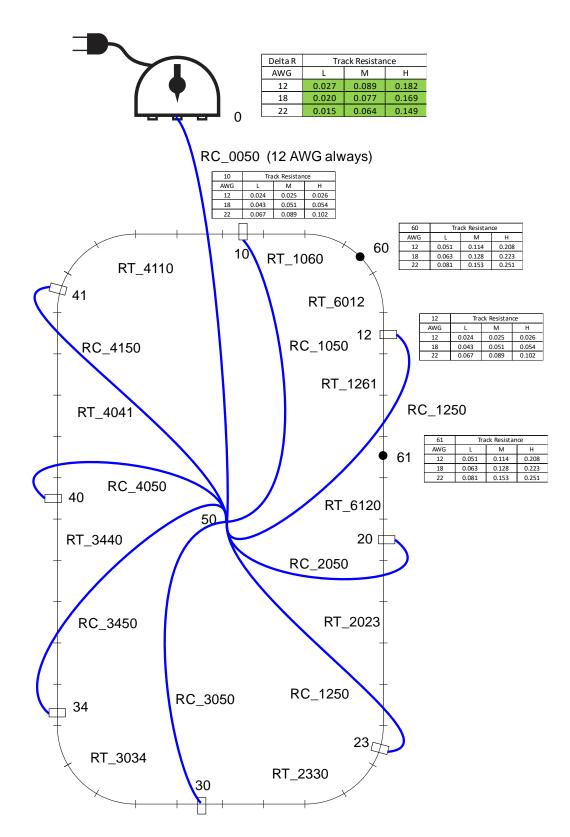



Figure 6: Case 6

CASE 7

Figure 7: Case 7

3. Observations and Recommendations

In examining the "Delta R" tables for all seven cases it is apparent that minimizing track resistance has a greater impact on acceptability than increasing the size (lower AWG) of the copper wire. Similarly, adding more connections to the track (1 for Case 1, 2 for Case 2, 4 for Cases 3-6, and 8 for Case 7) has a greater impact than increasing copper wire size. In fact in Case 7, acceptable performance is achieved with the smallest wire (22 AWG).

Based on the results of this analysis, I recommend using a "star" type wiring configuration as depicted in Cases 6 and 7. Key to minimizing the "Delta R" is keeping all of the wires from the common distribution point to the track roughly the same length and the same gauge as well as having track-wire connections no more than 5 track sections apart (as in Case 7). Although of lesser importance, I recommend using 18 AWG wire or larger to reduce the average resistance.

To make it easier to maintain the layout while maintaining a good electrical connection between the wire and track, I recommend soldering the wire directly to the underside of each rail. I recommend soldering about a 9 inch length of 22 AWG wire to the rail. While one would still likely need a high wattage soldering iron (40 watts or more) or a soldering gun, it is easier to solder a 22 AWG wire to a rail than a wire of greater size. Make sure the solder joint area on the track is clean and corrosion free.

Underneath the train table, you can connect the 22 AWG wire to a larger gauge wire using a 2 pole European style terminal block as depicted in Figure 8. The European style terminal blocks usually are purchased with 8 or more poles; but they are easily cut down to size.

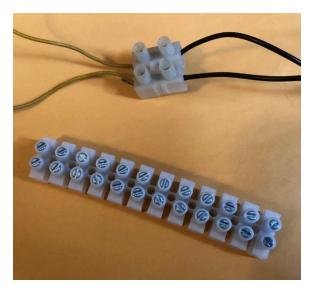


Figure 8: European Style Terminal Blocks

There are many options for the common distribution point. I generally recommend using either the European style Terminal Blocks or a feed through Terminal Block as depicted in Figure 9. You can use one terminal block for each of the two rails. With the feed through Terminal Block, all the terminals can be electrically connected by soldering a bare solid copper wire across all the terminal pole leads; the track and transformer wire are attached using the screws on top. For the European style Terminal Block, you can use solid wire to connect all the terminal poles on one side and connect the track and transformer wire on the other side. There are many other possible solutions that will work just as well.

Figure 9: Terminal Block Examples

Appendix A: Data

		Delta R	0.250	0.250	0.250	0.250	0.250	0.250	0.750	0.750	0.750	0.750	0.750	0.750	1.500	1.500	1.500	1.500	1.500	1.500	0.130	0.132	0.136	0.141	0.147	0.158	0.380	0.383	0.387	0.394	0.403	0.416	0.755	0.758	0.763	0.770
	Smallest	æ	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017
	Greatest	œ	0.254	0.257	0.261	0.267	0.277	0.294	0.754	0.757	0.761	0.767	0.777	0.794	1.504	1.507	1.511	1.517	1.527	1.544	0.134	0.139	0.147	0.158	0.174	0.202	0.384	0.390	0.398	0.411	0.431	0.460	0.760	0.765	0.774	0.787
	Std	Deviation	0.086	980.0	0.086	0.086	0.086	980.0	0.257	0.257	0.257	0.257	0.257	0.257	0.513	0.513	0.513	0.513	0.513	0.513	0.049	0.048	0.048	0.048	0.050	0.054	0.148	0.148	0.146	0.145	0.144	0.144	0.299	0.298	0.296	0.294
		Average R	0.168	0.171	0.175	0.182	0.192	0.208	0.497	0.499	0.503	0.510	0.520	0.536	0.989	0.991	0.995	1.002	1.012	1.028	0.089	0.095	0.104	0.117	0.135	0.161	0.246	0.252	0.262	0.278	0.300	0.335	0.480	0.487	0.497	0.514
		41	0.114	0.116	0.120	0.127	0.137	0.153	0.332	0.335	0.339	0.346	0.356	0.372	0.661	0.663	0.667	0.674	0.684	0.700	0.099	0.102	0.107	0.115	0.127	0.145	0.287	0.290	0.295	0.303	0.316	0.335	0.568	0.571	0.577	0.585
		40	0.192	0.194	0.198	0.205	0.215	0.231	0.567	0.569	0.573	0.580	0.590	909.0	1.129	1.132	1.136	1.142	1.152	1.169	0.134	0.139	0.147	0.158	0.174	0.197	0.384	0.390	0.398	0.411	0.431	0.460	0.760	0.765	0.774	0.787
from Node		34	0.239	0.241	0.245	0.252	0.262	0.278	0.707	0.710	0.714	0.721	0.731	0.747	1.411	1.413	1.417	1.424	1.434	1.450	0.109	0.117	0.129	0.147	0.170	0.202	0.297	908.0	0.320	0.341	0.372	0.417	0.578	0.588	0.602	0.625
Resistance to transformer (ohms) from Node		30	0.254	0.257	0.261	0.267	0.277	0.294	0.754	0.757	0.761	0.767	0.777	0.794	1.504	1.507	1.511	1.517	1.527	1.544	0.024	0.036	0.054	0.080	0.114	0.158	0.025	0.039	0.060	0.093	0.140	0.208	0.025	0.039	0.062	0.097
o transforn		23	0.239	0.241	0.245	0.252	0.262	0.278	0.707	0.710	0.714	0.721	0.731	0.747	1.411	1.413	1.417	1.424	1.434	1.450	0.109	0.117	0.129	0.147	0.170	0.202	0.297	908.0	0.320	0.341	0.372	0.417	0.578	0.588	0.602	0.625
esistance t		20	0.192	0.194	0.198	0.205	0.215	0.231	0.567	0.569	0.573	0.580	0.590	909.0	1.129	1.132	1.136	1.142	1.152	1.169	0.134	0.139	0.147	0.158	0.174	0.197	0.384	0.390	0.398	0.411	0.431	0.460	0.760	0.765	0.774	0.787
_		12	0.114	0.116	0.120	0.127	0.137	0.153	0.332	0.335	0.339	0.346	0.356	0.372	0.661	0.663	0.667	0.674	0.684	0.700	0.099	0.102	0.107	0.115	0.127	0.145	0.287	0.290	0.295	0.303	0.316	0.335	0.568	0.571	0.577	0.585
		10	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017
		AWG	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18
		Track R	0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	0.075	0.075	0.075	0.075	0.15	0.15	0.15	0.15	0.15	0.15	0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	0.075	0.075	0.075	0.075	0.15	0.15	0.15	0.15
		CASE	1	1	1	1	1	1	П	1	1	П	1	1	1	1	1	1	П	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

	Delta R	0.780	0.796	0.000	0.102	0.117	0.134	0.152	0.170	0.219	0.235	0.259	0.291	0.332	0.382	0.407	0.425	0.452	0.492	0.547	0.621	0.072	0.077	0.085	960.0	0.110	0.127	0.198	0.203	0.212	0.226	0.245	0.274	0.385	0.391
Smallest	œ	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007
Greatest	œ	0.808	0.840	0.094	0.109	0.128	0.152	0.180	0.214	0.223	0.242	0.270	0.309	0.360	0.426	0.412	0.432	0.463	0.510	0.574	0.665	0.077	0.084	960.0	0.113	0.137	0.171	0.202	0.210	0.223	0.243	0.273	0.317	0.390	0.398
Std	Deviation	0.291	0.289	0.033	0.034	0.037	0.041	0.046	0.052	860.0	0.098	0.099	0.102	0.108	0.118	0.198	0.197	0.197	0.197	0.200	0.208	0.032	0.032	0.032	0.033	0.035	0.040	660.0	860.0	0.097	0.097	960.0	0.098	0.199	0.198
	werage R [0.538	0.576	0.052	0.062	0.075	0.094	0.116	0.146	0.116	0.129	0.147	0.174	0.209	0.258	0.211	0.224	0.244	0.274	0.318	0.380	0.043	0.050	090.0	0.074	0.095	0.125	0.106	0.113	0.124	0.141	0.166	0.204	0.200	0.207
	41 /	0.598	0.618	9/0.0	0.082	0.091	0.103	0.118	0.139	0.202	0.210	0.222	0.239	0.262	0.294	0.390	0.399	0.412	0.431	0.459	0.499	690.0	0.073	0.080	0.089	0.103	0.124	0.195	0.199	0.205	0.215	0.231	0.255	0.382	0.386
	40	808.0	0.840	0.041	0.058	0.081	0.109	0.140	0.176	0.046	0.070	0.105	0.154	0.216	0.294	0.047	0.074	0.113	0.173	0.254	0.366	0.015	0.023	0.035	0.054	0.079	0.114	0.015	0.024	0.038	0.059	0.090	0.138	0.015	0.024
	34	0.658	0.710	0.094	0.109	0.128	0.152	0.180	0.214	0.223	0.242	0.270	0.309	0.360	0.426	0.412	0.432	0.463	0.510	0.574	0.665	0.077	0.084	960.0	0.113	0.137	0.171	0.202	0.210	0.223	0.243	0.273	0.317	0.390	0.398
	30	0.149	0.228	0.030	0.044	0.064	0.000	0.123	0.165	0.033	0.050	0.077	0.115	0.167	0.238	0.033	0.052	0.081	0.125	0.187	0.278	0.018	0.028	0.044	990.0	960.0	0.138	0.019	0.030	0.047	0.073	0.111	0.169	0.019	0.030
	23	0.658	0.710	0.083	0.093	0.107	0.127	0.152	0.186	0.210	0.222	0.240	0.267	0.304	0.356	0.398	0.410	0.430	0.460	0.503	0.568	0.077	0.084	960.0	0.113	0.137	0.171	0.202	0.210	0.223	0.243	0.273	0.317	0.390	0.398
	20	0.808	0.840	0.018	0.027	0.041	0.060	0.086	0.121	0.019	0.029	0.045	0.070	0.104	0.155	0.019	0.030	0.047	0.073	0.112	0.171	0.015	0.023	0.035	0.054	0.079	0.114	0.015	0.024	0.038	0.059	0.000	0.138	0.015	0.024
	12	0.598	0.618	0.000	0.074	0.081	0.091	0.105	0.126	0.195	0.200	0.207	0.218	0.234	0.259	0.383	0.388	0.395	0.406	0.424	0.450	690.0	0.073	0.080	0.089	0.103	0.124	0.195	0.199	0.205	0.215	0.231	0.255	0.382	0.386
	10	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007	0.011	0.017	0.027	0.044	0.004	0.007
	AWG	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14
	Track R	0.15	0.15	0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	0.075	0.075	0.075	0.075	0.15	0.15	0.15	0.15	0.15	0.15	0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	0.075	0.075	0.075	0.075	0.15	0.15
	CASE	2	2	3	3	3	3	3	3	3	3	8	3	8	3	8	3	3	8	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4

ច		•	•	•	•	•	۰	۰	•	•	
Std	Deviation	0.197	0.196	0.194	0.192	0.030	0.029	0.028	0.028	0.028	
	Average R	0.218	0.236	0.262	0.304	0.042	0.047	0.054	0.064	0.077	
	41	0.393	0.403	0.419	0.444	0.067	0.069	0.073	0.078	0.086	
	40	0.038	0.061	0.094	0.146	0.013	0.020	0.030	0.043	0.059	
	34	0.411	0.432	0.464	0.513	0.072	9/0.0	0.083	0.093	0.106	
	30	0.048	0.075	0.116	0.180	0.021	0.030	0.043	090.0	0.080	
	23	0.411	0.432	0.464	0.513	0.072	0.077	0.085	0.095	0.109	
	20	0.038	0.061	0.094	0.146	0.016	0.024	0.034	0.049	990.0	
	12	0.393	0.403	0.419	0.444	0.068	0.070	0.074	0.080	0.088	
	10	0.011	0.017	0.027	0.044	0.004	0.007	0.010	0.016	0.024	
	Std Gr	12 20 23 30 34 40 41 Average R D	12 20 23 30 34 40 41 Average R D 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218	Std G 12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.432 0.075 0.432 0.061 0.403 0.236 0.196	Std G 12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.432 0.075 0.432 0.061 0.403 0.236 0.196 0.419 0.094 0.464 0.116 0.464 0.094 0.419 0.262 0.194	Std G 12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.432 0.075 0.432 0.061 0.403 0.236 0.196 0.419 0.094 0.464 0.116 0.464 0.094 0.419 0.262 0.194 0.444 0.146 0.513 0.180 0.513 0.146 0.444 0.304 0.192	12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.432 0.061 0.403 0.236 0.196 0.419 0.094 0.464 0.116 0.464 0.094 0.419 0.262 0.194 0.444 0.146 0.513 0.186 0.513 0.146 0.192 0.092 0.044 0.304 0.092 0.093 0.093 0.092 0.092 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 0.093 <td< td=""><td>12 20 23 30 34 40 41 Average R D G G G G G G G G G G G G G G G G G G</td><td>12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.432 0.061 0.493 0.218 0.197 0.419 0.094 0.464 0.116 0.464 0.094 0.449 0.262 0.196 0.044 0.146 0.513 0.180 0.513 0.146 0.444 0.304 0.192 0.068 0.016 0.072 0.021 0.072 0.013 0.047 0.030 0.070 0.024 0.036 0.046 0.043 0.029 0.047 0.029 0.074 0.034 0.085 0.043 0.083 0.073 0.076 0.029 0.076 0.029</td><td>12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.452 0.075 0.432 0.061 0.403 0.236 0.197 0.419 0.094 0.464 0.116 0.464 0.094 0.444 0.364 0.196 0.068 0.016 0.072 0.071 0.072 0.013 0.067 0.042 0.030 0.070 0.024 0.076 0.020 0.069 0.047 0.029 0.074 0.034 0.083 0.030 0.076 0.078 0.028 0.080 0.049 0.093 0.043 0.054 0.028</td><td>_</td></td<>	12 20 23 30 34 40 41 Average R D G G G G G G G G G G G G G G G G G G	12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.432 0.061 0.493 0.218 0.197 0.419 0.094 0.464 0.116 0.464 0.094 0.449 0.262 0.196 0.044 0.146 0.513 0.180 0.513 0.146 0.444 0.304 0.192 0.068 0.016 0.072 0.021 0.072 0.013 0.047 0.030 0.070 0.024 0.036 0.046 0.043 0.029 0.047 0.029 0.074 0.034 0.085 0.043 0.083 0.073 0.076 0.029 0.076 0.029	12 20 23 30 34 40 41 Average R Deviation 0.393 0.038 0.411 0.048 0.411 0.038 0.393 0.218 0.197 0.403 0.061 0.452 0.075 0.432 0.061 0.403 0.236 0.197 0.419 0.094 0.464 0.116 0.464 0.094 0.444 0.364 0.196 0.068 0.016 0.072 0.071 0.072 0.013 0.067 0.042 0.030 0.070 0.024 0.076 0.020 0.069 0.047 0.029 0.074 0.034 0.083 0.030 0.076 0.078 0.028 0.080 0.049 0.093 0.043 0.054 0.028	_

AWG 16 18 20 22 12 12 14 16 18

7.74ck R 0.15 0.15 0.15 0.025 0.025 0.025 0.025

Detta R 0.400 0.415 0.436 0.068 0.071 0.075 0.085

Smallest
R
0.011
0.017
0.027
0.044
0.004
0.007
0.016

Greatest
R
0.411
0.432
0.464
0.513
0.072
0.085
0.095

0.092	0.194	0.197	0.202	0.209	0.219	0.233	0.381	0.385	0.390	0.398	0.410	0.428	0.058	0.055	0.052	0.048	0.043	0.038	0.182	0.179	0.175	0.169	0.160	0.149
0.036	0.004	0.007	0.011	0.017	0.026	0.040	0.004	0.007	0.011	0.017	0.027	0.042	0.025	0.039	0.060	0.093	0.142	0.217	0.026	0.040	0.063	0.099	0.153	0.237
0.127	0.198	0.204	0.213	0.226	0.245	0.272	0.386	0.391	0.401	0.415	0.437	0.469	0.083	0.094	0.113	0.141	0.185	0.255	0.208	0.220	0.238	0.268	0.314	0.386
0.029	0.097	0.095	0.092	0.089	0.086	0.083	0.197	0.194	0.191	0.187	0.182	0.175	0.031	0.030	0.028	0.026	0.023	0.020	0.097	960.0	0.094	0.090	980.0	0.080
0.095	0.105	0.111	0.120	0.134	0.153	0.180	0.199	0.205	0.215	0.231	0.253	0.285	0.054	0.067	0.086	0.117	0.164	0.236	0.117	0.130	0.151	0.184	0.233	0.312
0.097	0.192	0.195	0.199	0.205	0.214	0.228	0.380	0.382	0.387	0.393	0.403	0.419	0.083	0.094	0.113	0.141	0.185	0.255	0.208	0.220	0.238	0.268	0.314	0.386
0.080	0.014	0.022	0.034	0.052	0.077	0.111	0.015	0.023	0.036	0.056	0.084	0.127	0.025	0.039	0.060	0.093	0.142	0.217	0.026	0.040	0.063	0.099	0.153	0.237
0.124	0.197	0.202	0.211	0.223	0.241	0.266	0.385	0.390	0.399	0.412	0.432	0.462	0.083	0.094	0.113	0.141	0.185	0.255	0.208	0.220	0.238	0.268	0.314	0.386
0.104	0.023	0.035	0.053	0.079	0.113	0.158	0.024	0.037	0.057	0.087	0.129	0.190	0.025	0.039	090'0	0.093	0.142	0.217	0.026	0.040	0.063	0.099	0.153	0.237
0.127	0.198	0.204	0.213	0.226	0.245	0.272	0.386	0.391	0.401	0.415	0.437	0.469	0.083	0.094	0.113	0.141	0.185	0.255	0.208	0.220	0.238	0.268	0.314	0.386
0.088	0.017	0.027	0.041	0.062	0.000	0.129	0.018	0.028	0.043	0.067	0.100	0.149	0.025	0.039	090'0	0.093	0.142	0.217	0.026	0.040	0.063	0.099	0.153	0.237
0.100	0.193	0.196	0.201	0.208	0.218	0.233	0.381	0.384	0.389	0.396	0.408	0.425	0.083	0.094	0.113	0.141	0.185	0.255	0.208	0.220	0.238	0.268	0.314	0.386
0.036	0.004	0.007	0.011	0.017	0.026	0.040	0.004	0.007	0.011	0.017	0.027	0.042	0.025	0.039	090.0	0.093	0.142	0.217	0.026	0.040	0.063	0.099	0.153	0.237
22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22	12	14	16	18	20	22
0.025	0.075	0.075	0.075	0.075	0.075	0.075	0.15	0.15	0.15	0.15	0.15	0.15	0.025	0.025	0.025	0.025	0.025	0.025	0.075	0.075	0.075	0.075	0.075	0.075

		Delta R	0.370	0.367	0.362	0.355	0.345	0.330
	Smallest	œ	0.026	0.040	0.064	0.101	0.158	0.247
	Greatest	œ	0.395	0.407	0.426	0.456	0.502	0.577
	Std	Deviation	0.198	0.196	0.194	0.190	0.184	0.176
		Average R	0.210	0.224	0.245	0.279	0.330	0.412
		41	0.395	0.407	0.426	0.456	0.502	0.577
		40	0.026	0.040	0.064	0.101	0.158	0.247
from Node		34	0.395	0.407	0.426	0.456	0.502	0.577
esistance to transformer (ohms) from Node		30	0.026	0.040	0.064	0.101	0.158	0.247
to transforr		23	0.395	0.407	0.426	0.456	0.502	0.577
esistance 1		20	0.026	0.040	0.064	0.101	0.158	0.247
_		12	0.395	0.407	0.426	0.456	0.502	0.577
		10	0.026	0.040	0.064	0.101	0.158	0.247
		AWG	12	14	16	18	20	22
		Track R	0.15	0.15	0.15	0.15	0.15	0.15
		CASE	9	9	9	9	9	9

CASE 7

		Resistano	e to transforr	mer (ohms) fr	om Node					
							Std	Greatest	Smallest	
Track R	AWG	10	60	12	61	Average R	Deviation	R	R	Delta R
0.025	12	0.024	0.051	0.024	0.051	0.038	0.016	0.051	0.024	0.027
0.025	14	0.029	0.054	0.029	0.054	0.041	0.014	0.054	0.029	0.025
0.025	16	0.035	0.058	0.035	0.058	0.046	0.013	0.058	0.035	0.023
0.025	18	0.043	0.063	0.043	0.063	0.053	0.012	0.063	0.043	0.020
0.025	20	0.053	0.071	0.053	0.071	0.062	0.010	0.071	0.053	0.017
0.025	22	0.067	0.081	0.067	0.081	0.074	0.009	0.081	0.067	0.015
0.075	12	0.025	0.114	0.025	0.114	0.070	0.051	0.114	0.025	0.089
0.075	14	0.031	0.117	0.031	0.117	0.074	0.050	0.117	0.031	0.086
0.075	16	0.039	0.121	0.039	0.121	0.080	0.048	0.121	0.039	0.082
0.075	18	0.051	0.128	0.051	0.128	0.090	0.045	0.128	0.051	0.077
0.075	20	0.067	0.138	0.067	0.138	0.103	0.041	0.138	0.067	0.071
0.075	22	0.089	0.153	0.089	0.153	0.121	0.037	0.153	0.089	0.064
0.15	12	0.026	0.208	0.026	0.208	0.117	0.105	0.208	0.026	0.182
0.15	14	0.031	0.211	0.031	0.211	0.121	0.104	0.211	0.031	0.179
0.15	16	0.040	0.216	0.040	0.216	0.128	0.101	0.216	0.040	0.175
0.15	18	0.054	0.223	0.054	0.223	0.139	0.098	0.223	0.054	0.169
0.15	20	0.074	0.234	0.074	0.234	0.154	0.093	0.234	0.074	0.160
0.15	22	0.102	0.251	0.102	0.251	0.176	0.086	0.251	0.102	0.149

Appendix B: GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. < http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

O. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

- A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
- B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
- C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
- D. Preserve all the copyright notices of the Document.
- E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
- F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
- G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
- H. Include an unaltered copy of this License.
- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
- J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
- K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
- L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
- M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
- N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
- O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Seehttp://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.